31 research outputs found

    A Sliding Mode Multimodel Control for a Sensorless Photovoltaic System

    Full text link
    In this work we will talk about a new control test using the sliding mode control with a nonlinear sliding mode observer, which are very solicited in tracking problems, for a sensorless photovoltaic panel. In this case, the panel system will has as a set point the sun position at every second during the day for a period of five years; then the tracker, using sliding mode multimodel controller and a sliding mode observer, will track these positions to make the sunrays orthogonal to the photovoltaic cell that produces more energy. After sunset, the tracker goes back to the initial position (which of sunrise). Experimental measurements show that this autonomic dual axis Sun Tracker increases the power production by over 40%

    On Guaranteed Global Exponential Stability Of Polynomial Singularly Perturbed Control Systems

    Get PDF
    The problem of global exponential stability for a class of nonlinear singularly perturbed systems is examined in this paper. The stability analysis is based on the use of basic results of integral manifold of nonlinear singularly perturbed systems, the composite Lyapunov method and the notations and properties of Tensoriel algebra. Some of the derived results are presented as linear matrix inequalities (LMIs) feasibility tests. Moreover, we pointed out that if the global exponential stability of the reduced order subsystem is established this is equivalent to guarantee the global exponential stability of the original high order closed loop system. An upper bound e1 of the small parameter e , can also be determined up to which established stability conditions via LMI’s are maintained verified. A numerical example is given to illustrate the proposed approach

    An LMI Technique for the Global Stabilization of Nonlinear Polynomial Systems

    Get PDF
    This paper deals with the global asymptotic stabilization of nonlinear polynomial systems within the framework of Linear Matrix Inequalities (LMIs). By employing the well-known Lyapunov stability direct method and the Kronecker product properties, we develop a technique of designing a state feedback control law which stabilizes quadratically the studied systems. Our main goal is to derive sufficient LMI stabilization conditions which resolution yields a stabilizing control law of polynomial systems

    Hybrid Functions Direct Approach and State Feedback Optimal Solutions for a Class of Nonlinear Polynomial Time Delay Systems

    No full text
    The aim of this paper is to determine the optimal open loop solution and a nonlinear delay-dependent state feedback suboptimal control for a class of nonlinear polynomial time delay systems. The proposed method uses a hybrid of block pulse functions and Legendre polynomials as an orthogonal base for system’s states and input expansion. Hence, the complex dynamic optimization problem is then reduced, with the help of operational properties of the hybrid basis and Kronecker tensor product lemmas, to a nonlinear programming problem that could be solved with available NLP solvers. A practical nonlinear feedback controller gains are deduced with respect to a least square formalism based on the optimal open loop control results. Simulation results show efficiency of the proposed numerical optimal approach

    Constrained Uncertain System Stabilization with Enlargement of Invariant Sets

    No full text
    An enhanced method able to perform accurate stability of constrained uncertain systems is presented. The main objective of this method is to compute a sequence of feedback control laws which stabilizes the closed-loop system. The proposed approach is based on robust model predictive control (RMPC) and enhanced maximized sets algorithm (EMSA), which are applied to improve the performance of the closed-loop system and achieve less conservative results. In fact, the proposed approach is split into two parts. The first is a method of enhanced maximized ellipsoidal invariant sets (EMES) based on a semidefinite programming problem. The second is an enhanced maximized polyhedral set (EMPS) which consists of appending new vertices to their convex hull to minimize the distance between each new vertex and the polyhedral set vertices to ensure state constraints. Simulation results on two examples, an uncertain nonisothermal CSTR and an angular positioning system, demonstrate the effectiveness of the proposed methodology when compared to other works related to a similar subject. According to the performance evaluation, we recorded higher feedback gain provided by smallest maximized invariant sets compared to recently studied methods, which shows the best region of stability. Therefore, the proposed algorithm can achieve less conservative results

    Proportional PDC Design-Based Robust Stabilization and Tracking Control Strategies for Uncertain and Disturbed T-S Model

    No full text
    This paper presents a proportional parallel distributed compensation (PPDC) design to the robust stabilization and tracking control of the nonlinear dynamic system, which is described by the uncertain and perturbed Takagi–Sugeno (T-S) fuzzy model. The proposed PPDC control design can greatly reduce the number of adjustable parameters involved in the original PDC and separate them from the feedback gain. Furthermore, the process of finding the common quadratic Lyapunov matrix is simplified. Then, the global asymptotic stability with decay rate and disturbance attenuation of the closed-loop T-S model affected by uncertainties and external disturbances are discussed using the H∞ synthesis and linear matrix inequality (LMI) tools. Finally, to illustrate the merit of our purpose, numerical simulation studies of stabilizing and tracking an inverted pendulum system are presented

    Modelling and Wavelet-Based Identification of 3-DOF Vehicle Suspension System

    No full text

    Commande multimodèle optimale des éoliennes (application à la participation des éoliennes au réglage de la fréquence)

    No full text
    La forte et rapide croissance de l énergie éolienne à travers le monde a nécessité la mise en vigueur de nouveaux critères normalisés permettant de l intégrer dans les réseaux électriques sans affecter la qualité et la stabilité du système, et qui peuvent demander aux éoliennes de participer au réglage de la fréquence dans les réseaux en cas de besoin. Ainsi, les travaux présentés dans cette thèse visent à proposer une solution de loi de commande qui permette aux éoliennes de participer au réglage de la fréquence du réseau. En analysant les limites des correcteurs classiques de types P, PI et PID, nous avons opté pour la commande LQ munie d une approche multimodèle et qui a montré de bonnes performances aux résultats de simulation. Certaines améliorations ont été ajoutées à cette loi de commande du genre modèle de référence, action intégrale, afin de permettre une poursuite de puissance autour d une référence donnée qui change selon la fréquence du réseauThe fast and big growth of wind power around the world required the implementation of new standardized criteria to integrate this kind of energy into electric networks without affecting the quality and stability of the system. These criteria could ask the wind turbines to participate in the network frequency control when necessary. Thus, the works presented in this thesis aim to provide a control law solution that allows wind turbines to participate the grid frequency control. By analyzing the limits of traditional regulators such as P, PI and PID, we opted for the LQ controller combined to a multi-model approach because of the good performances shown in the simulation results. Some improvements were added to this control law: reference model, integral action, ... to allow a power trucking for a given reference that changes with the grid frequencyVILLENEUVE D'ASCQ-ECLI (590092307) / SudocSudocFranceF
    corecore